CoCoLasso for high-dimensional error-in-variables regression
نویسندگان
چکیده
منابع مشابه
Methods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملSwapping Variables for High-Dimensional Sparse Regression from Correlated Measurements
We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that the standard cadre of computationally tractable sparse regression algorithms—such as the Lasso, Orthogonal Matching Pursuit (OMP), and their extensions—perform poorly when the measurement matr...
متن کاملSwapping Variables for High-Dimensional Sparse Regression with Correlated Measurements
We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that the standard cadre of computationally tractable sparse regression algorithms—such as the Lasso, Orthogonal Matching Pursuit (OMP), and their extensions—perform poorly when the measurement matr...
متن کاملHierarchical selection of variables in sparse high-dimensional regression
We study a regression model with a huge number of interacting variables. We consider a specific approximation of the regression function under two assumptions: (i) there exists a sparse representation of the regression function in a suggested basis, (ii) there are no interactions outside of the set of the corresponding main effects. We suggest an hierarchical randomized search procedure for sel...
متن کاملHigh-dimensional Instrumental Variables Regression and Confidence Sets
We propose an instrumental variables method for estimation in linear models with endogenous regressors in the high-dimensional setting where the sample size n can be smaller than the number of possible regressors K, and L ≥ K instruments. We allow for heteroscedasticity and we do not need a prior knowledge of variances of the errors. We suggest a new procedure called the STIV (Self Tuning Instr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2017
ISSN: 0090-5364
DOI: 10.1214/16-aos1527