CoCoLasso for high-dimensional error-in-variables regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for regression analysis in high-dimensional data

By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...

متن کامل

Swapping Variables for High-Dimensional Sparse Regression from Correlated Measurements

We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that the standard cadre of computationally tractable sparse regression algorithms—such as the Lasso, Orthogonal Matching Pursuit (OMP), and their extensions—perform poorly when the measurement matr...

متن کامل

Swapping Variables for High-Dimensional Sparse Regression with Correlated Measurements

We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that the standard cadre of computationally tractable sparse regression algorithms—such as the Lasso, Orthogonal Matching Pursuit (OMP), and their extensions—perform poorly when the measurement matr...

متن کامل

Hierarchical selection of variables in sparse high-dimensional regression

We study a regression model with a huge number of interacting variables. We consider a specific approximation of the regression function under two assumptions: (i) there exists a sparse representation of the regression function in a suggested basis, (ii) there are no interactions outside of the set of the corresponding main effects. We suggest an hierarchical randomized search procedure for sel...

متن کامل

High-dimensional Instrumental Variables Regression and Confidence Sets

We propose an instrumental variables method for estimation in linear models with endogenous regressors in the high-dimensional setting where the sample size n can be smaller than the number of possible regressors K, and L ≥ K instruments. We allow for heteroscedasticity and we do not need a prior knowledge of variances of the errors. We suggest a new procedure called the STIV (Self Tuning Instr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2017

ISSN: 0090-5364

DOI: 10.1214/16-aos1527